
TIBCO whitepaper

1. Executive summary
TIBCO Fulfilment Orchestration Suite (FOS) and TIBCO
integration platform have a proven track record of implementing
a modern and dynamic catalog-driven Service Order
Management system. Based on numerous successful TIBCO
FOS implementations performed by Behaim IT’s consulting
team, Behaim’s Resource Order Management Accelerator for
TIBCO FOS is complementing TIBCO FOS and TIBCO integration
platform in the areas of project methodology, overall system setup,
corner integration cases, and smart testing strategy for Resource
Order Management, for the activation and other functional
management of network elements.

ABOUT THE AUDIENCE

TARGET
AUDIENCE

Telco operators / mobile providers who:

• Seek a better solution for ROM (Resource Order Management)
and Provisioning

• Consider TIBCO Fulfillment Orchestration Suite (FOS) for ROM
in addition to FOS’s typical role as a Service Order Management
(SOM) system

• Operate outdated resource provisioning platforms

CHALLENGES
FACED

• Problems due to legacy integration from many years ago

• Complex provisioning and activation flows

• Obsolete protocols in legacy network components

• High integration OpEx costs caused by intermediate integration
platforms, e.g., InstantLink

Using TIBCO Fulfillment
Orchestration Suite
for Resource Order
Management

About Behaim IT
Solutions
Behaim IT Solutions partners
with clients to help them
overcome their 21st century
IT challenges: Leveraging the
Cloud and shared services;
Gaining insight quickly in a
world of Big Data; and taking
real-time action on Data for
competitive advantage, new
opportunities, and risk diversion.
We specialize in Integration
and Hadoop technologies that
enable: Data Storage, Data
Analysis, Integration / Internet of
Things (IOT), API Management,
In-memory & Complex Event
Processing, Business Process
Management, Master Data
Management, and Visualizations.

TIBCO whitepaper | 2

ABOUT THE ACCELERATOR

ACCELERATOR
OBJECTIVES

• Quickly accelerates FOS implementation

• Reduces implementation risks

ACCELERATOR
BENEFITS

• Leads customer through FOS implementation

• Describes the reference architecture

• Brings the proven methodology for the entire project lifecycle

• Includes tools and components

ACCELERATOR
CONTENT

• Methodology

• Prepopulated document guides

• Code templates

• Value-added tools and components

• … and more

2. Motivation
Communications Service Providers (CSPs) are facing
challenges represented by the constant need to innovate their
IT systems. Meanwhile, in their existing solutions they inherit
an integration infrastructure that was often implemented a
few decades ago. Using modern software tools, many CSPs
undertake modernization initiatives to address flexibility and
backward compatibility issues of legacy system integrations.

Some typical roadblocks in any modernization program include:

•  How to ensure both newly required and current products
are fulfilled correctly in the new solution

•  Systematically map and define existing
provisioning flows

•  Define straightforward rules on how to implement
new products and keep the future extension costs
under control

•  How to address integration to existing legacy systems

•  Find a way to ensure obsolete protocols
are integrated

•  Reduce integration OpEx costs by eliminating
intermediate integration platforms like InstantLink,
homegrown, or 3rd party custom-built solutions

•  How to define and execute a cost efficient test strategy

•  The testing complexity of service activation is the
product of several factors like activation order
content, product catalog content, the number of
external systems, and existing customer service
portfolio. Traditional testing approaches lead to an
excessive number of test cases and related efforts.

TIBCO whitepaper | 3

While TIBCO Fulfilment Orchestration Suite (FOS) and TIBCO
integration tools are well suited to implement a modern and
dynamic catalog-driven Service Order Management system,
and Behaim’s Resource Order Management Accelerator for
FOS complements it in the areas of project methodology,
overall system setup, corner integration cases, and smart
testing strategy for Resource Order Management for activation
and management of network elements.

Behaim’s ROM Accelerator for FOS is based on numerous
successful TIBCO FOS implementations performed by Behaim
IT’s consulting team. This experience covers the entire project
lifecycle starting with the ideation phase and ending with
operational support.

The actual project implementation will be precisely defined.
Efforts are spent on customer specific situations and common
project resources are already in place.

The Behaim ROM Accelerator is comprised of:

•  Behaim’s Best Practice Methodology

•  Ready to Use Code Templates

•  Pre-Prepared Document Layouts

•  Value Added Tools and Components

The ready-to-use source code is provided as projectware, so it
is open to modifications and ready to be further maintained by
the customer, for example, in DevOps mode.

2.1. Terms and abbreviations

TERM DESCRIPTION

TIBCO FOS TIBCO Fulfillment Orchestration Suite consists of:

• TIBCO Product and Service Catalog that can be used to model
commercial products, technical services, and their associated
fulfillment processes

• TIBCO Offer and Price Engine, a commercial offer and
pricing server

• TIBCO Order Management, a catalog-driven order
management system

• TIBCO Product and Service Inventory, a system of record for
subscriber’s inventory

ACCELERATOR Behaim’s ROM Accelerator for FOS

PRODUCT TM Forum’s term for the business entity that is sold to the
communications service provider’s customer. In TIBCO FOS, a
commercial product is called an offer.

SERVICE In accordance with TMF, a product is analyzed into services, customer-
facing or resource-facing

TIBCO whitepaper | 4

TERM DESCRIPTION

RESOURCE In accordance with TMF, this is synonymous with the network element
that needs to be activated in order for the customer’s communications
service to work.

BACKEND
SYSTEM

System providing service(s) to customer

NETWORK
ELEMENT

Synonym of backend system used by telecommunication service
providers. A network element is a resource, per TMF.

SERVICE
INVENTORY

Data storage keeping the image of existing customer services
and arameters.

PROVISIONING Calling backend system API to enable or disable services to customer.

PROCESS
COMPONENT

Customer specific code acting as a basic building block of plan execution.

INTEGRATION
FACADE

Integration process converting one backend system specific API to
common API called by process component.

NETWORK
ELEMENT

Provisioning API of backend system integrated to FOS based solution.

API Application programming interface.

TELNET Communication protocol.

SSL Communication protocol.

CORBA Communication protocol.

MML Man machine language. General term used to indicate text based
communications initially intended to be operated by humans.

Table 1 Terms and abbreviations

3. Accelerator description
The accelerator is comprised of:

•  Analysis, system design, implementation and testing
approach methodology

•  Ready-to-use document templates

•  Setup of core FOS components

•  Structured framework to build the process components

•  Reusable integration to common network element types

•  Supplementary tools

The ready-to-use source code is provided as projectware, so it
is open to modifications and ready to be further maintained by
the customer, for example in DevOps mode.

TIBCO whitepaper | 5

3.1. Project methodology

As-Is Analysis
The order fulfilment project starts with an analytical phase
where the as-is state of the system is described.

•  The very first step is to align the terminology, e.g., the
meaning of the terms products, subscriptions, CPES,
customer facing services, value added services, etc.

•  The final number of connected network elements in scope
is identified. All scenarios (activate, deactivate, suspend,
resume, port in/out, MSISDN swap…) to be supported by
particular orderable items are identified.

•  The cross reference between top level products and
backend system involvement in scenarios is documented.

•  The available documentation to the existing integration of
network elements is identified.

•  Any potential need for collaboration with third-party
vendors is identified.

High-level design
The aim of the high-level design is to establish the structure of
solution. Recommended referential architecture is used as a
base for system design. The following items are designed:

•  Product and service inventory, either by identifying pre-
existing systems or designing a completely new service
inventory system

•  TIBCO Product and Service Catalog features used to
model particular provisioning flow types

•  Functionality that must be implemented within process
components’ code

•  Standardized data retrieval for process components data

•  Integration mechanisms and protocols that will be used
for particular network elements. The APIs of inbound
systems, the summary of each network element’s
operations and features are documented.

Detailed design
The actual catalog content is created. The execution plan
fragments and their responsibilities are defined. Integration
mapping to the frontend and backend systems are
documented. Operations tools like logging and error handling
mechanisms for automatic and manual recovery are designed.
Guidelines of messaging system use are set.

The eventual build process is not affected by the methodology.
The implementation team is free to use its own approach,
whether it is waterfall-style project management or agile-
focused work organization.

TIBCO whitepaper | 6

Testing approach contribution
The systematic approach to the solution, the use of FOS
capabilities, and the consolidation of process components
shall result in a significant reduction of user acceptance testing
efforts that will cover the complete system functionality. The
accelerator bets on reusable automated testing.

The accelerator methodology and tools support all testing phases

•  Unit tests. Unit testing, including the automation of
regression testing, is continuously performed by the CI/
CD framework. Unit test data is already captured in the
mapping documents.

•  Integration tests. The goal is to enable an isolated
integration test without code change.

•  Acceptance test. Addressing the permutation like
complexity and potential large number of test cases in
acceptance test

Integration adapters, whether towards the backend systems
or the order intake systems allow the isolation of an operation
from the rest of the solution. The unified data logging supports
one-at-a-time integration testing.

The FOS implementation team closely cooperates with the test
manager and the test analyst to structure the acceptance tests
in order to balance a reasonable number of test cases to be
performed and the solution coverage ratio.

The optimal result is achieved by leveraging systematic
resource model design through the use of the TIBCO Product
and Service Catalog, by collecting input data for process
components in a unified method, and by approaching
integration uniformly using integration adapters.

3.2. Ready-to-use document templates
Behaim’s ROM Accelerator for FOS comes with a number of
document templates to support the progressive phases of the
entire project lifecycle:

•  Solution blueprint document template

•  High level design document

•  Responsibility split between integration and
process logic

•  Introduction of the resource adapter concept

•  Process Component Technical Design Template

•  Integration Facade Technical Design Template

•  Data mapping document templates

TIBCO whitepaper | 7

•  Definition of actual catalog content

•  Definition of products, features used

•  Definition of execution plan fragments and
their responsibilities

•  Design of operations tools

•  Logging and error handling mechanisms for
automatic and manual recovery

•  Guidelines of messaging system use

•  Performance considerations of integration code

3.3. Setup of core FOS components

Assumed TIBCO product stack
The complete solution assumes the deployment of the
following TIBCO products. The product stack can be
divided into two groups based on their roles in any FOS
implementation project.

Order fulfillment software

•  TIBCO Product and Service Catalog

•  TIBCO Order Management, for order decomposition and
orchestration

•  TIBCO Product and Service Inventory to act as a
repository for service inventory

Integration software

•  TIBCO EMS messaging system connecting the
individual subsystems

•  TIBCO BusinessWorks software integration tool

•  TIBCO ActiveMatrix BPM business process management
tool for fulfillment tasks involving human interaction

•  TIBCO ActiveSpaces distributed in-memory cache

All components are installed in a fail-over configuration.

TIBCO whitepaper | 8

While TIBCO FOS is a proven Service Order Management system,
Behaim IT has developed resource-facing integration facade
templates, along with implementation artifacts that enable FOS to be
used concurrently as a catalog-driven Resource Order Management
system. Using this strategy, the customer can reduce upfront capital
expenditure, simplify deployment footprint, and reduce ongoing
maintenance costs.

3.4. Structured framework to build the
process components
Process components are provided in the form of code
skeletons for typical use cases. Components are structured to
the parts.

•  Reading data, typically parameters and characteristics
from own order line, different order lines, work context,
service inventory, and orchestration specific information
like affinity-based IDs

•  Executing command(s) using backend system facades

An asynchronous execution pattern is provided in the example
implementation. In the template implementation, a shared library
for common logging and error handling components is used.

CRM

REUSABLE FACADES FOR NETWORK ELEMENTS

CORE FULFILLMENT
SOLUTION

HLR

ssh/MML SOAP xml/http telnet/MML CORBA LDAP PL/SQL REST/Json

HSS MMSC VMS OCS LDAP OTA SMSC

CUSTOMER ASSET
INVENTORY

PRODUCT
CATALOG

ORDER
MANAGEMENT CACHE SERVICE

INVENTORY

ORDER
GATEWAY

PROCESS
COMPONENTS

LEGACY
CUSTOMER CARE

LEGACY SERVICE
ACTIVATION

NETWORK ELEMENTS

HLR HSS MMSC VMS OCS LDAP OTA SMSC

TIBCO whitepaper | 9

3.5. Reusable integration to common network
element types
Integration Facade Code templates with common interface to
process components will avoid the need to use intermediate
integration platforms (like InstantLink) in the final solution.

A wide set of existing templates connecting to the common
backend system running their APIs on a broad variety of
protocols is available. This includes specific legacy-oriented
templates:

•  MML protocol over telnet or ssh lines is supported
by TIBCO BusinessWorks, using especially developed
TTY access plug-In with Groovy scripting capability for
network elements like Ericsson HLR, Nokia MSC, VMS
servers, and similar text-based legacy systems.

•  CORBA based communication is supported by Java-
based code called from TIBCO BusinessWorks.

•  Oracle DB direct access or PL/SQL access is supported by
TIBCO BusinessWorks JDBC activity.

Up-to-date protocols are also handled by the template set:

•  SOAP-based communication to systems with more up-to-
date provisioning interfaces like Nokia PGW

•  Rest/JSON based communication

•  Pure XML over HTTP(s)

3.6. Supplementary tools
Supplementary project supporting tools are provided as well.
They include:

•  Error handling and reprocessing component, including
client process shared library, DB scripts GUI, and server
side process

•  Code Template for order intake facades (north side of
system)

•  Code Template for interfacing with service Iinventory

3.7. Prepared projectware components
Although modern software developers prefer REST APIs, based
on Behaim’s experience from many TIBCO Order Management
implementations, about 50% of network element interfaces are
still on legacy interfaces:

•  CORBA

•  telnet

•  ssh

where MML is emulated over telnet and ssh.

TIBCO whitepaper | 10

3.7.1. CORBA integration
CORBA interfaces are implemented using Java Global Instance
and Java Invoke Method activities.

To reach CORBA server object implementation from TIBCO
BusinessWorks, the following steps are required:

•  Running idl2java compiler to get stub classes for modules;
their methods are defined in an IDL file

•  Compilation of generated Java files, containing stub
classes for accessing CORBA servers

•  Instantiating CORBA client objects and storing the
instances into Java Global Instance

•  Using Java Methods activities to call the methods of the
CORBA client object instances stored in Java Global
Instance resources

To make the integration of CORBA objects seamless and visible
in TIBCO BusinessWorks, the accelerator uses method2object
utility. The utility generates:

•  For each interface method, a serializable method object is
generated where the method parameters become fields of
the member method

•  For each module defined in IDL file, the utility generates a
TIBCO BusinessWorks wrapper. The wrapper methods use
the generated method objects as parameters. The original
methods are called from the methods of the TIBCO
BusinessWorks wrapper object.

•  Method objects can be then used by XML to Java and
Java to XML activities where parameter names are visible
and provides better view into the interface for a TIBCO
BusinessWorks designer/developer.

3.7.2. TTY access plug-in
TTY access plug-in consists of two components:

•  TIBCO BusinessWorks Plug-in for TTY software enables
the integration of Network Element over telnet or ssh
emulating terminal operating personnel shortly called MML
interface

•  TTY access utility is a tool that helps to develop, tune,
and test the communication with NE elements. It makes
it possible to fine tune the Groovy script that controls
command-rendering and external system response-
parsing in the MML communication, without the need
to run the whole setup, including the deployment of
integration facade. It significantly increases productivity
during integration testing.

TIBCO whitepaper | 11

4. Developing TIBCO
BusinessWorks application using
TTY plug-in functionality
Behaim TIBCO plug-in for TTY allows the execution of
commands and scripts on a remote server. It supports
two basic transport protocols, i.e., Telnet and SSH. In the
background of the plugin there is a session manager, which
takes care of the sessions’ lifecycle. It is possible to create
many sessions at once.

The following schema shows TTY plug-in architecture:

Figure 1 Behaim TIBCO Plug-in TTY Architecture

TIBCO BUSINESSWORKS
NETWORK ELEMENTS FACADES

TIBCO BUSINESSWORKS
PROCESS COMPONENTS

TIBCO FULFILLMENT ORCHESTRATION SUITE

TIBCO ENTERPRISE MESSAGING SERVICE

TTY ACCESS
PLUG-IN CORBA

SOAP REST JDBC/SQL

TTY ACCESS
PLUG-IN

LDAP
PLUG-IN

ssh/MML

HLR

CORBA

OCS

telnet/MML

VMS

LDAP

LDAP

soap/http

HSS

REST/json

SMSC

PL/SQL

OTA

NETWORK ELEMENTS

TIBCO BUSINESSWORKS 6

TTY PLUGIN

REMOTE SERVER

SSH, TELNET

TTY ACCESS

TIBCO whitepaper | 12

The TTY plug-in palette contains activities listed below

•  Destroy

•  EndFlow

•  Init

•  RemoteCommand

•  StartFlow

•  TTYAutomation

Figure 2 Palette activities

This section describes how to configure the TIBCO
BusinessWorks application with TTY plug-in functionality in
TIBCO BusinessStudio for BusinessWorks.

All supported features are available within the TTY palette.

4.1. TTY connection management
Connection to the remote server is managed by Init and
Destroy activities. The recommended approach is to create a
process activator with Init activity for establishing a connection
and Destroy activity for deleting a connection.

4.1.1. Remote server connection configuration
Init activity holds connection configuration such as host, port,
protocol, target system, and authentication.

Host field serves as endpoint address (e.g. 10.0.0.53).

Port field serves as port number (e.g 22 or 23).

Protocol field serves as transport protocol (Telnet or SSH).

Target system field serves as the endpoint representation of a
new line character.

Authentication indicates type of authentication and provides
three options:

•  None

•  Username and password

•  Certificate

TIBCO whitepaper | 13

Init activity can be configured in general tab or in activity input.
The activity input is taking a preference.

Figure 3 Activator

4.2. TTY remote command
TTY remote command allows the execute command in a
remote server. The result of the command is sent back to
TIBCO BusinessWorks activity via stream. Each activity
supports executing exactly one command in a remote server.

TTY remote command consists of one activity called
RemoteCommand.

Figure 4 Process with RemoteCommand activity

TIBCO whitepaper | 14

4.3. TTY execute script
TTY execute script allows the execution of the Groovy script.
Every Groovy script accepts parameters such as:

•  Expected – list of expected values

•  Return – return object serialized into XML format

•  Identifiers – List of pair (key–value)

•  Arguments – List of pair (key–value)

Communication with the server is enabled via TTYaccess class
object, which allows access to the server from the Groovy
script. TTY access also implements the method expect. The
method accepts a list of regex patterns and reads lines from
the input stream until one of the patterns matches. The
obtained lines can then be parsed in the Groovy code as
Groovy has very strong support for regular expressions and
parsing strings.

The result is obtained in key–value form. Every expected item
from input will be passed to output with or without its value.

TTY execute script consists of one activity called TTY automation.

Figure 5 Process with TTY automation activity

TIBCO whitepaper | 15

The sample below demonstrates the script’s features.

import java.util.regex.Matcher

tty.setNl(“\r\n”)

class Parser {

 private RESP = [:]

 private expectMap = [

 PERMANENT_SUBSCRIBER_DATA :’PERMANENT
SUBSCRIBER DATA.*$’,

 SUBSCRIBER_IDENTITY:’SUBSCRIBER IDENTITY.*$’,

 SUPLEMENTARY_SERVICE_DATA:’SUPPLEMENTARY SERVICE
DATA.*’

]

 void parse() {

 def sec = tty.expectRegex(expectMap)

 def i=0

 while(sec != null) {

 i++

 if (sec == ‘PERMANENT_SUBSCRIBER_DATA’) {

 parsePermSubscData()

 } else if (sec == ‘SUBSCRIBER_IDENTITY’) {

 parseSubscriberIdentity()

 } else if (sec == ‘SUPLEMENTARY_SERVICE_DATA’) {

 parseSuplementatryServiceData()

 }

 sec = tty.expectRegex(expectMap)

 }

 }

4.4. TTY flow
When using RemoteCommand activity or TTY automation
activity, the session manager selects a classic session. In some
cases, it is necessary to execute commands one by one in the
same environment. Executing one command depends on the
result of the previous command.

TTY provides two activities for creating flow of RemoteCommand
and TTY automation sharing the same session.

TTY execute script consists of two activities:

•  StartFlow – allocate session for flow communication.

•  EndFlow – release session back to available sessions.

TIBCO whitepaper | 16

TIBCO fuels digital business by enabling better decisions and faster, smarter actions through the TIBCO
Connected Intelligence Cloud. From APIs and systems to devices and people, we interconnect everything,
capture data in real time wherever it is, and augment the intelligence of your business through analytical insights.
Thousands of customers around the globe rely on us to build compelling experiences, energize operations, and
propel innovation. Learn how TIBCO makes digital smarter at www.tibco.com.
©2018, 2019, TIBCO Software Inc. All rights reserved. TIBCO and the TIBCO logo are trademarks or registered trademarks of TIBCO Software Inc. or its
subsidiaries in the United States and/or other countries. All other product and company names and marks in this document are the property of their respective
owners and mentioned for identification purposes only.

23Apr2020

Global Headquarters
3307 Hillview Avenue
Palo Alto, CA 94304
+1 650-846-1000 TEL
+1 800-420-8450
+1 650-846-1005 FAX
www.tibco.com

Figure 6 Process with flow sessions

